Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A second monoclinic modification of phenyl quinoxalin-2-yl ether

Zanariah Abdullah and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 10 September 2008; accepted 26 September 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.114; data-to-parameter ratio = 15.6.

The two aromatic systems in the title compound, $C_{14}H_{10}N_2O$, enclose a dihedral angle of 77.9 (1)°, and the C–O–C interring bond angle is 117.6 (1)°.

Related literature

Another polymorph of this compound has recently been described in the C2/c space group; see Hassan *et al.* (2008).

Experimental

Crystal data $C_{14}H_{10}N_2O$ $M_r = 222.24$

Monoclinic, $P2_1/n$ a = 7.9447 (2) Å b = 6.5169 (1) Å c = 20.2992 (5) Å $\beta = 91.983 (1)^{\circ}$ $V = 1050.36 (4) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEX diffractometer Absorption correction: none 7016 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.114$ S = 1.032398 reflections Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 100 (2) K $0.40 \times 0.20 \times 0.10 \text{ mm}$

2398 independent reflections 1960 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.021$

154 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.33 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

The authors thank the University of Malaya for supporting this study (grant No. F2358/2008A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2084).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1820.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Acta Cryst. (2008). E64, o2165 [doi:10.1107/S1600536808031243]

A second monoclinic modification of phenyl quinoxalin-2-yl ether

Z. Abdullah and S. W. Ng

Comment

The compound was recently described in the C2/c space group with the two aromatic substituents in $C_{14}H_{10}N_2O$ enclosing a dihedral angle of 63.8 (1)°. The bond angle at oxygen measures to 118.2 (1)° (Hassan *et al.*, 2008). In the $P2_1/n$ modification described herein (Scheme I, Fig. 1), the two aromatic systems show a dihedral angle of 77.9 (1)° and they subtend an angle of 117.6 (1)° at oxygen.

Experimental

The monoclinic modification was obtained when the C2/c modification of quinoxalinyl phenyl ether was recrystallized from ethanol in the presence of a small quantity of manganese acetate. Slow evaporation of the solvent gave colorless crystals mixed with unchanged manganese acetate.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2U(C).

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{14}H_{10}N_2O$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

phenyl quinoxalin-2-yl ether

Crystal data	
$C_{14}H_{10}N_2O$	$F_{000} = 464$
$M_r = 222.24$	$D_{\rm x} = 1.405 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 2712 reflections
a = 7.9447 (2) Å	$\theta = 2.7 - 28.4^{\circ}$
b = 6.5169(1) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 20.2992 (5) Å	T = 100 (2) K
$\beta = 91.983 \ (1)^{\circ}$	Block, colorless

 $V = 1050.36 (4) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX diffractometer	1960 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.021$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 100(2) K	$\theta_{\min} = 2.0^{\circ}$
ω scans	$h = -10 \rightarrow 9$
Absorption correction: none	$k = -8 \rightarrow 8$
7016 measured reflections	$l = -26 \rightarrow 26$
2398 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.114$	$w = 1/[\sigma^2(F_o^2) + (0.0648P)^2 + 0.2602P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
2398 reflections	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
154 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
Duineamentane aits la satisme starssterne incoming diment	

 $0.40 \times 0.20 \times 0.10 \text{ mm}$

Primary atom site location: structure-invariant direct Extinction correction: none methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.34884 (10)	0.24973 (13)	0.66577 (4)	0.0189 (2)
N1	0.58503 (12)	0.26591 (14)	0.60174 (5)	0.0150 (2)
N2	0.35723 (12)	0.23610 (14)	0.49088 (5)	0.0153 (2)
C1	0.45193 (13)	0.28653 (19)	0.72247 (5)	0.0170 (3)
C2	0.44960 (15)	0.48057 (19)	0.74939 (6)	0.0199 (3)
H2	0.3836	0.5863	0.7292	0.024*
C3	0.54551 (15)	0.5187 (2)	0.80653 (6)	0.0233 (3)
H3	0.5461	0.6519	0.8255	0.028*
C4	0.64037 (15)	0.3635 (2)	0.83596 (6)	0.0232 (3)
H4	0.7066	0.3906	0.8749	0.028*
C5	0.63876 (15)	0.1689 (2)	0.80870 (6)	0.0242 (3)
H5	0.7029	0.0622	0.8293	0.029*
C6	0.54360 (15)	0.1286 (2)	0.75122 (6)	0.0219 (3)
H6	0.5419	-0.0047	0.7323	0.026*
C7	0.42352 (15)	0.25028 (16)	0.60650 (5)	0.0148 (2)
C8	0.30741 (14)	0.23391 (17)	0.55103 (6)	0.0158 (3)

H8	0.1905	0.2211	0.5586	0.019*
C9	0.52855 (14)	0.25143 (16)	0.48299 (5)	0.0139 (2)
C10	0.59172 (15)	0.25296 (17)	0.41912 (5)	0.0160 (3)
H10	0.5161	0.2467	0.3819	0.019*
C11	0.76232 (15)	0.26345 (17)	0.41025 (6)	0.0174 (3)
H11	0.8043	0.2630	0.3670	0.021*
C12	0.87492 (15)	0.27483 (18)	0.46528 (6)	0.0179 (3)
H12	0.9927	0.2808	0.4589	0.021*
C13	0.81557 (14)	0.27741 (18)	0.52800 (6)	0.0167 (3)
H13	0.8925	0.2878	0.5647	0.020*
C14	0.64163 (14)	0.26477 (16)	0.53833 (5)	0.0141 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0148 (4)	0.0292 (5)	0.0127 (4)	-0.0019 (3)	0.0008 (3)	-0.0024 (3)
N1	0.0146 (5)	0.0160 (5)	0.0144 (5)	0.0003 (3)	-0.0008 (4)	-0.0002 (3)
N2	0.0155 (5)	0.0137 (5)	0.0166 (5)	0.0004 (3)	-0.0011 (4)	-0.0005 (4)
C1	0.0119 (5)	0.0277 (6)	0.0116 (5)	-0.0025 (4)	0.0025 (4)	0.0000 (4)
C2	0.0208 (6)	0.0237 (6)	0.0153 (5)	-0.0008 (5)	0.0014 (4)	0.0026 (4)
C3	0.0253 (6)	0.0276 (7)	0.0170 (6)	-0.0061 (5)	0.0017 (5)	-0.0019 (5)
C4	0.0160 (6)	0.0396 (8)	0.0140 (5)	-0.0056 (5)	0.0002 (4)	0.0014 (5)
C5	0.0164 (6)	0.0368 (7)	0.0195 (6)	0.0047 (5)	0.0025 (4)	0.0076 (5)
C6	0.0199 (6)	0.0262 (7)	0.0199 (6)	0.0018 (5)	0.0042 (4)	-0.0001 (5)
C7	0.0168 (5)	0.0137 (5)	0.0139 (5)	0.0000 (4)	0.0014 (4)	-0.0007 (4)
C8	0.0134 (5)	0.0162 (6)	0.0177 (6)	0.0003 (4)	-0.0005 (4)	-0.0009 (4)
C9	0.0146 (5)	0.0113 (5)	0.0158 (6)	0.0011 (4)	-0.0008 (4)	0.0001 (4)
C10	0.0188 (6)	0.0148 (6)	0.0142 (5)	0.0015 (4)	-0.0024 (4)	0.0002 (4)
C11	0.0200 (6)	0.0186 (6)	0.0138 (5)	0.0017 (4)	0.0030 (4)	0.0013 (4)
C12	0.0147 (5)	0.0195 (6)	0.0196 (6)	0.0009 (4)	0.0023 (4)	0.0011 (4)
C13	0.0145 (5)	0.0192 (6)	0.0161 (6)	0.0009 (4)	-0.0020 (4)	0.0007 (4)
C14	0.0158 (6)	0.0121 (5)	0.0142 (5)	0.0007 (4)	-0.0002 (4)	0.0005 (4)

Geometric parameters (Å, °)

O1—C7	1.3598 (14)	С5—Н5	0.9500
O1—C1	1.4099 (13)	С6—Н6	0.9500
N1—C7	1.2941 (15)	C7—C8	1.4346 (15)
N1-C14	1.3781 (14)	С8—Н8	0.9500
N2—C8	1.2966 (15)	C9—C10	1.4066 (15)
N2—C9	1.3796 (15)	C9—C14	1.4165 (16)
C1—C2	1.3780 (17)	C10—C11	1.3751 (16)
C1—C6	1.3786 (17)	С10—Н10	0.9500
C2—C3	1.3880 (16)	C11—C12	1.4086 (16)
С2—Н2	0.9500	C11—H11	0.9500
C3—C4	1.3847 (18)	C12—C13	1.3730 (15)
С3—Н3	0.9500	C12—H12	0.9500
C4—C5	1.383 (2)	C13—C14	1.4073 (16)
C4—H4	0.9500	С13—Н13	0.9500

supplementary materials

C5—C6	1.3931 (17)		
C7—O1—C1	117.58 (9)	O1—C7—C8	113.94 (10)
C7—N1—C14	115.20 (10)	N2—C8—C7	121.96 (11)
C8—N2—C9	116.40 (10)	N2—C8—H8	119.0
C2—C1—C6	122.08 (11)	С7—С8—Н8	119.0
C2C1O1	117.68 (10)	N2-C9-C10	119.51 (10)
C6—C1—O1	120.14 (11)	N2—C9—C14	120.90 (10)
C1—C2—C3	118.77 (11)	C10—C9—C14	119.59 (10)
C1—C2—H2	120.6	C11—C10—C9	120.38 (10)
C3—C2—H2	120.6	C11—C10—H10	119.8
C4—C3—C2	120.30 (12)	C9—C10—H10	119.8
С4—С3—Н3	119.8	C10-C11-C12	120.04 (11)
С2—С3—Н3	119.8	C10-C11-H11	120.0
C5—C4—C3	119.98 (11)	C12—C11—H11	120.0
C5—C4—H4	120.0	C13—C12—C11	120.46 (11)
C3—C4—H4	120.0	C13—C12—H12	119.8
C4—C5—C6	120.32 (12)	C11—C12—H12	119.8
С4—С5—Н5	119.8	C12—C13—C14	120.53 (10)
С6—С5—Н5	119.8	С12—С13—Н13	119.7
C1—C6—C5	118.53 (12)	C14—C13—H13	119.7
С1—С6—Н6	120.7	N1-C14-C13	119.52 (10)
С5—С6—Н6	120.7	N1—C14—C9	121.50 (10)
N1—C7—O1	122.03 (10)	C13—C14—C9	118.98 (11)
N1—C7—C8	124.02 (11)		
C7—O1—C1—C2	100.70 (12)	O1—C7—C8—N2	178.65 (10)
C7—O1—C1—C6	-82.79 (13)	C8—N2—C9—C10	179.47 (10)
C6—C1—C2—C3	1.36 (17)	C8—N2—C9—C14	-0.26 (15)
O1—C1—C2—C3	177.79 (10)	N2-C9-C10-C11	-178.53 (10)
C1—C2—C3—C4	-0.52 (17)	C14-C9-C10-C11	1.21 (16)
C2—C3—C4—C5	-0.52 (18)	C9-C10-C11-C12	-0.64 (16)
C3—C4—C5—C6	0.77 (18)	C10-C11-C12-C13	-0.59 (17)
C2—C1—C6—C5	-1.11 (17)	C11-C12-C13-C14	1.22 (17)
O1—C1—C6—C5	-177.45 (10)	C7—N1—C14—C13	-178.90 (10)
C4—C5—C6—C1	0.02 (17)	C7—N1—C14—C9	1.19 (15)
C14—N1—C7—O1	-179.82 (10)	C12-C13-C14-N1	179.46 (10)
C14—N1—C7—C8	-0.37 (15)	C12—C13—C14—C9	-0.63 (16)
C1—O1—C7—N1	5.91 (15)	N2-C9-C14-N1	-0.94 (16)
C1—O1—C7—C8	-173.59 (10)	C10-C9-C14-N1	179.33 (10)
C9—N2—C8—C7	1.10 (15)	N2-C9-C14-C13	179.15 (10)
N1-C7-C8-N2	-0.84 (17)	C10-C9-C14-C13	-0.58 (15)

